Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila.
نویسندگان
چکیده
The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth.
منابع مشابه
Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling.
The target-of-rapamycin pathway couples nutrient availability with tissue and organismal growth in metazoans. The key effectors underlying this growth are, however, unclear. Here we show that Maf1, a repressor of RNA polymerase III-dependent tRNA transcription, is an important mediator of nutrient-dependent growth in Drosophila. We find nutrients promote tRNA synthesis during larval development...
متن کاملTIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contr...
متن کاملA Nutrient Sensor Mechanism Controls Drosophila Growth
Organisms modulate their growth according to nutrient availability. Although individual cells in a multicellular animal may respond directly to nutrient levels, growth of the entire organism needs to be coordinated. Here, we provide evidence that in Drosophila, coordination of organismal growth originates from the fat body, an insect organ that retains endocrine and storage functions of the ver...
متن کاملTOR signaling regulates planarian stem cells and controls localized and organismal growth.
Target of Rapamycin (TOR) controls an evolutionarily conserved signaling pathway that modulates cellular growth and division by sensing levels of nutrients, energy and stress. As such, TOR signaling is a crucial component of tissues and organs that translates systemic signals into cellular behavior. The ubiquitous nature of TOR signaling, together with the difficulty of analyzing tissue during ...
متن کاملPlasmodium falciparum Maf1 Confers Survival upon Amino Acid Starvation
The target of rapamycin complex 1 (TORC1) pathway is a highly conserved signaling pathway across eukaryotes that integrates nutrient and stress signals to regulate the cellular growth rate and the transition into and maintenance of dormancy. The majority of the pathway's components, including the central TOR kinase, have been lost in the apicomplexan lineage, and it is unknown how these organis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 31 8 شماره
صفحات -
تاریخ انتشار 2012